Abstract
Investigate the effects of RT before and during a 4-wk course of incremental DOX treatment on skeletal muscle function. Male, Sprague-Dawley rats (N = 36) were randomly assigned to the following groups: sedentary+saline (SED + SAL), sedentary+DOX (SED + DOX), RT + SAL, or RT + DOX. The RT protocol utilized a raised cage model, which provided progressive hindlimb loading throughout the 14-wk study, whereas SED animals were kept in normal housing. Starting at week 10, DOX-treated animals received 3 mg·kg DOX weekly for 4 wk (12 mg·kg cumulative); whereas SAL-treated groups received 0.9% NaCl as a placebo. Grip strength was recorded at 0, 10, 12, and 14 wk. Ex vivo muscle function was performed on excised soleus (SOL) and extensor digitorum longus (EDL) from the right hind limb 5 d after the last injection and were analyzed for expression of creatine kinase (CK) and creatine transporters. SED + DOX-treated animals had significantly lower EDL mass compared with SED + SAL- and RT + DOX-treated animals. Grip strength, EDL maximal force, and EDL force development were significantly lower in SED + DOX-treated animals compared with RT + SAL and SED + SAL. No significant differences in EDL function were found between RT + DOX and RT + SAL animals. DOX treatment reduced expression of CK in the SOL, which abated with RT. Low-intensity RT may attenuate the decline in skeletal muscle function during incremental DOX treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.