Abstract

BackgroundSusceptibility of European sea bass (Dicentrarchus labrax L.) to viral nervous necrosis (VNN) is well-known. Interest towards selective breeding as a tool to enhance genetic resistance in this species has increased sharply due to the major threat represented by VNN for farmed sea bass and limitations concerning specific therapeutical measures. A sea bass experimental population (N = 650) was challenged with nervous necrosis virus (NNV) to investigate genetic variation in VNN mortality. In addition, relationships of this trait with serum cortisol concentration after stress exposure, antibody titer against NNV antigens, and body weight at a fixed age were studied to identify potential indicator traits of VNN resistance.ResultsThe estimate of heritability for VNN mortality was moderate and ranged from 0.15 (HPD95%, 95% highest posterior density interval: 0.02, 0.31) to 0.23 (HPD95%: 0.06, 0.47). Heritability estimates for cortisol concentration, antibody titer, and body weight were 0.19 (HPD95%: 0.07, 0.34), 0.36 (HPD95%: 0.16, 0.59) and 0.57 (HPD95%: 0.33, 0.84), respectively. Phenotypic relationships between traits were trivial and not statistically significant, except for the estimated correlation between antibody titer and body weight (0.24). Genetic correlations of mortality with body weight or antibody titer (− 0.39) exhibited a 0.89 probability of being negative. A negligible genetic correlation between mortality and cortisol concentration was detected. Antibody titer was estimated to be positively correlated with body weight (0.49).ConclusionsAntibody titer against NNV offers the opportunity to use indirect selection to enhance resistance, while the use of cortisol concentration as an indicator trait in breeding programs for VNN resistance is questionable. The estimate of heritability for VNN mortality indicates the feasibility of selective breeding to enhance resistance to NNV and raises attention to the development of genomic prediction tools to simplify testing procedures for selection candidates.

Highlights

  • Susceptibility of European sea bass (Dicentrarchus labrax L.) to viral nervous necrosis (VNN) is wellknown

  • Nervous necrosis virus challenge test Typical clinical signs related to nervous necrosis virus (NNV) infection were detected in each experimental tank starting day 3 after injection

  • Interest in selective breeding as a tool to enhance genetic resistance to VNN in European sea bass has markedly increased in recent years, because of the major threat represented by NNV for sea bass hatcheries and aquaculture farms, combined with the lack of effective therapeutical remedies for this disease [1, 43]

Read more

Summary

Introduction

Susceptibility of European sea bass (Dicentrarchus labrax L.) to viral nervous necrosis (VNN) is wellknown. A sea bass experimental population (N = 650) was challenged with nervous necrosis virus (NNV) to investigate genetic variation in VNN mortality. Viral nervous necrosis (VNN), known as viral encephalopathy and retinopathy (VER), affects more than 50 different marine and freshwater fish species. European sea bass (Dicentrarchus labrax L.), one of the most common and valuable marine species that is widely cultured in the Mediterranean areas (FEAP Annual report 2017), is one of the species that is recognized as being susceptible to NNV. The severity of NNV outbreaks is strictly related to water temperature, with an optimum between 25 and 30 °C for the genotypic variant that affects the European sea bass, i.e. the red-spotted grouper NNV (RGNNV) [4]. NNV infection can become chronic and cause poor growth rates [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call