Abstract

ContextResistance to thyroid hormone (RTH) is an inherited syndrome of reduced tissue responsiveness to thyroid hormone, which is usually due to mutations in the thyroid hormone receptor β gene (THRB). Few studies have been conducted to investigate bone and mineral metabolism in RTH. ObjectiveThe objective of the study was to evaluate the clinical and biochemical parameters related to bone and mineral metabolism in RTH due to mutations in the THRB gene (RTHβ). Design and participantsWe conducted a cross-sectional study on 14 patients with RTHβ (RTHG), eight adults and six children, and 24 control subjects (CG). OutcomesSerum measures included total calcium (TCa), inorganic phosphate (iP), alkaline phosphatase (AP), parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHD), osteocalcin (OC), carboxyterminal telopeptide (CTX), and fibroblast growth factor 23 (FGF-23). We estimated the renal threshold phosphate concentration (TmPO4/GFR) and assessed bone mass using dual X-ray absorptiometry. ResultsAdults and children with RTH showed higher serum levels of TCa than controls (P=.029 and, P=.018 respectively). However, only children with RTH exhibited lower serum levels of iP than controls (P=.048). FGF-23 was higher in RTHβ children (P=.04). RTHβ adults had lower whole-body (P=.01) and lumbar spine (P=.01) bone mineral density than control subjects. The same pattern was observed when the results were expressed as Z-scores between groups, with a lower value in RTHG than in CG for the lumbar spine of adults (P=.03). No difference was observed between groups in PTH, 25OHD, AP, OC, and CTX. ConclusionBiochemical abnormalities are seen in children with RTH (Low iP, high FGF23), while high calcium (with normal UCa) is seen in RTH subjects of all ages, and later on, in adult life, low BMD is seen. Considering that the TRα1 isoform is the predominant TR in the skeleton, we hypothesize that probably these patients may exhibit enhanced calcium flux from bone to circulation. Our data represent a challenge for new studies to unveil the control of calcium and phosphorus homeostasis and fracture risk in these patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.