Abstract

Prolonged insulin-induced hypoglycemia causes widespread loss of neurons and permanent brain damage with irreversible coma. Although the deprivation of carbohydrate stores affects all brain regions, the breakdown of energy metabolism and cessation of protein synthesis occur predominantly in the cerebral cortex, caudoputamen and hippocampus. The cerebellum, brain stem and hypothalamus are largely resistant. Following transplantation of the cerebellar anlage of rat fetuses (day 15 of gestation) into the caudoputamen of adult rats, the grafts were allowed to differentiate for a period of 8 weeks. The host animals were then subjected to 30 min of severe hypoglycemia with isoelectric EEG ('coma'). In contrast to the surrounding vulnerable brain structures, protein synthesis was fully preserved within the cerebellar transplant. Grafting of fetal forebrain cortex to the same location did not result in escape from hypoglycemic cell injury. This indicates that resistance to hypoglycemia is part of the programmed differentiation of the cerebellum and develops irrespective of its location and functional integration within the nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call