Abstract
Unintentional weight loss, primarily due to the loss of fat mass rather than muscle mass, is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. Since transgenic mice overexpressing human wild-type α-synuclein (α-Syn mice) are modestly leaner than control mice, and since diabetes, a metabolic disorder, is a major risk factor for PD, we reasoned that high-fat diet-induced diabetes/metabolic dysregulation in α-Syn mice may serve as a robust tool for exploring how early α-synuclein pathology contributes to metabolic dysregulation, leading to weight loss in PD. Thus, α-Syn and age-matched controls were fed a high-fat diet (HFD) chow (60% fat calories) ad libitum for four months. Compared with controls on HFD (control-HFD), α-Syn mice on HFD (α-Syn-HFD) were dramatically leaner. The resistance to gaining weight in α-Syn-HFD mice was accompanied by improved glucose tolerance, a dramatic decrease in fat mass, and an increase in energy expenditure. Despite this leaner phenotype and better glucose tolerance, the mortality was much higher in male α-Syn-HFD mice than in all controls, but was unaffected in females, suggesting protective effects of female sex hormones, as well as lower α-synuclein levels. Immunoblot analysis of insulin signaling in the olfactory bulb, the proposed initial seeding site of α-synuclein pathology, revealed a decrease of IGF-IRβ, p GSK, and p mTOR in α-Syn-HFD mice. Since GSK-3β and mTOR regulate synaptic plasticity, we assessed levels of PSD-95 and synaptophysin in the olfactory bulb. As anticipated, we observed a significant decrease in the levels of PSD-95, along with a potentially compensatory increase in synaptophysin levels. Our results show that α-Syn mice, when challenged with diet-induced diabetes/metabolic dysregulation, clearly reveal a profile of robust metabolic dysfunction, thus providing a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. We propose a role for olfactory dysfunction in PD-related unintentional weight loss and suggest that strategies aimed at increasing body weight/BMI will improve the quality of life and prognosis for people living with PD.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.