Abstract

The prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae varies worldwide, however, the incidence of ESBL-producing environmental Salmonella isolates is increasing. Salmonella is still one of the most important pathogens that occur in the poultry supply chain. Therefore, this study analyzed the susceptibility of Salmonella isolates collected from a poultry supply chain to β-lactam antibiotics, and examined the phenotypes of the isolates based on enzyme-inducible AmpC β-lactamase analysis. All analysis of the putative positive isolates in the current study confirmed that 27.02% (77/285 analysis) of all ESBL tests realized with the isolates produced a profile of resistance consistent with β-lactamase production. All isolates of S. Minnesota serotype had ESBL phenotype. Aztreonam resistance was the least common amongst the Salmonella isolates, followed by ceftazidime. The presence of inducible chromosomal ESBL was detected in 14 different isolates of the 19 serotypes investigated. These results are very indicatives of the presence of ESBL genes in Salmonella isolates from a broiler supply chain, reaffirming the growing global problem of ESBL resistance.

Highlights

  • IntroductionPoultry is a major global reservoir of Salmonella; control of this pathogen is important in the interests of public health

  • Data from the Food and Agriculture Organization and the United States Department of Agriculture shows that the largest chicken meat-producing countries are the United States of America and Brazil, with an estimated combined annual output for 2014 of over 40 million tons [1]

  • ESBL production is an important mechanism of resistance for enterobacteria

Read more

Summary

Introduction

Poultry is a major global reservoir of Salmonella; control of this pathogen is important in the interests of public health. Related to this is the increasing number of enterobacterial strains producing extended-spectrum β-lactamases (ESBLs). These enzymes inactivate a wide variety of β-lactam drugs, including third-generation cephalosporins, penicillins, and monobactams [2,3,4]. An analysis of ESBL production in microorganisms not normally known to show β-lactam resistance can generate relevant information with respect to the transfer of resistance genes and the importance of control measures for the use of antibiotics in animal feed [5,6]. The prevalence of ESBL carriage is likely to increase and spread to different enteric pathogens, as occurred with ampicillin resistance [7] or more recently for cephalosporin resistance in Escherichia coli, even in the absence of selective pressure from antimicrobial agents [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call