Abstract

Humans and rodents exhibit a divergent obesity phenotype where not all individuals exposed to a high calorie diet become obese. We hypothesized that in C57BL/6NTac mice, despite a shared genetic background and diet, variations in individual gut microbiota function, immune cell phenotype in the intestine and adipose determine predisposition to obesity. From a larger colony fed a high-fat (HF) diet (60% fat), we obtained twenty-four 18-22-week-old C57BL/6NTac mice. Twelve had responded to the diet, had higher body weight and were termed obese prone (OP). The other 12 had retained a lean frame and were termed obese resistant (OR). We singly housed them for three weeks, monitored food intake and determined insulin resistance, fat accumulation, and small intestinal and fecal gut microbial community membership and structure. From the lamina propria and adipose tissue, we determined the population of total and specific subsets of T and B cells. The OP mice with higher fat accumulation and insulin resistance harbored microbial communities with enhanced capacity for processing dietary sugars, lower alpha diversity, greater abundance of Lactobacilli and low abundance of Clostridia and Desulfobacterota. The OR with less fat accumulation retained insulin sensitivity and harbored microbial communities with enhanced capacity for processing and synthesizing amino acids and higher diversity and greater abundance of Lactococcus, Desulfobacterota and class Clostridia. The B cell phenotype in the lamina propria and mesenteric adipose tissue of OR mice was characterized by a higher population of IgA+ cells and B1b IgM+ cells, respectively, compared to the OP. We conclude that variable responses to the HF diet are associated with the function of individuals' gut microbiota and immune responses in the lamina propria and adipose tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.