Abstract
Abstract Specific chemical environments affect industrial objects. Portland cement composites (concrete and mortar) were impregnated with a special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot were applied as industrial waste. Portland cement composites were made of the same aggregate, cement, and water. The durability of the prepared cement composite samples was tested in 5% solution of HCl and 5% solution of H2SO4 as a function of immersion time. The changes in mechanical strength and mass of the samples were periodically measured. Cement composites impregnated with sulfur composite exhibited limited mechanical strength and mass loss, while the physico-mechanical properties of the Portland cement concrete regressed rapidly. The loss in weight of ordinary concrete impregnated with sulfur composite, kept in aqueous solutions of acids, hydroxides, salts, and in water for a year was determined using 100×100×100 mm samples. The same samples were then used in compressive strength tests. The image analysis used for surface destruction monitoring, performed by scanning microscopy for the determination of damaged surface area and the original surface area before acid resistance testing, showed similar results. Based on the image analysis results, a model for predicting the degradation of mechanical strength during durability testing was established. The fact that the calculated and experimental strength values were not vastly different proved the validity of the proposed model. A brief summary of new products related to the special sulfur composite is given as follows: impregnation, repair, overlays, and precast polymer concrete will be presented. Sulfur composite as a polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.