Abstract

In order to impart resistance switching capability to polymer-based composite, one-dimensional conductive nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) were wrapped with TiO2 conformal layer for passivation, and embedded in polymer matrix to form a networklike distribution within it. The CNT-TiO2 and CNF-TiO2-embedded composites, respectively, exhibited the reproducible resistance switching behavior of the high on/off ratio, along with the good switching stability under repetitive switching measurements. Furthermore, it is notable that the presence of defect site or incomplete formation of the TiO2 passivation layer on the conductive component would significantly alter the switching performance. The advantages of our approach include the simple and mass-production capable fabrication procedure along with the sustainable switching performance suitable to promising nonvolatile memory device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call