Abstract

Resistance spot welding is the dominant process for joining sheet metals in automotive industry. Even-thickness combinations are rarely used in practice; therefore, there is clearly a practical need for failure behaviour investigation of uneven-thickness resistance spot welds. The aim of this paper is to investigate and analyze the failure mode and failure mechanism of dissimilar thickness low carbon steel resistance spot welds during tensile-shear overload test. Microstructural investigations, microhardness tests and tensile-shear tests were conducted. Mechanical properties of the joint were described in terms of peak load, energy absorption and failure mode. It was concluded that weld nugget size and the strength of the thinner base metal are the controlling factors of the peak load and energy absorption of dissimilar thickness spot welds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call