Abstract

Anthracnose caused by Colletotrichum scovillei is one of the most destructive diseases of chili worldwide. Florylpicoxamid is a new quinone inside inhibitor (QiI) fungicide, which shows intensively inhibitory activity against C. scovillei. Currently, florylpicoxamid is in the registration process to control chili anthracnose in China. This study investigated the risk of resistance and resistance genetic mechanism of C. scovillei to florylpicoxamid. Baseline sensitivity of 141C. scovillei isolates to florylpicoxamid was established with an average EC50 value of 0.2328 ± 0.0876 μg/mL. A total of seven stable florylpicoxamid-resistant mutants were obtained with resistance factors ranging from 41 to 276. The mutants showed similar or weaker traits in mycelial growth, sporulation, conidial germination and pathogenicity than their parental isolates. Generally, the resistance risk of C. scovillei to florylpicoxamid would be moderate. In addition, there was no cross-resistance between florylpicoxamid and the commercially available fungicides tested. A37V and S207L mutations in the cytochrome b protein were detected in four high-resistance and three moderate-resistance mutants, respectively, of which, S207L is a new mutation. Molecular docking showed that the two mutations conferred different resistance levels to florylpicoxamid. These results provide a new perspective for QiI fungicide-resistance mechanism and may help in the reasonable use of florylpicoxamid against chili anthracnose in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call