Abstract

Piles driven in Intermediate GeoMaterials (IGM) pose multiple design and construction challenges because of the high uncertainty in IGM properties, lacking knowledge pertaining to pile responses in IGM, and absence of classification, static analysis (SA) methods, and design recommendations. A classification criterion is established for coarse grained soil based intermediate geomaterials (CG-IGM) using test pile data from bridge projects completed in four U.S. states. This study improves our understanding of pile resistance responses in CG-IGM and results in pile design recommendations. Unit shaft resistance (qs) of CG-IGM increases with the ratio of effective vertical stress (σv′) to the ratio of corrected N-value, (N1)60. Unit end bearing (qb) increases with the ratio of. corrected N-value, (N1)60 to the effective vertical stress (σv′). New SA methods are developed for predicting qs and qb. The proposed SA methods are compared against existing β-method developed for coarse grained soil and validated using an independent pile load test dataset. Pile setup is observed in qs of piles driven in CG-IGMs, and pile relaxation is mostly observed in qb. Statistical assessment concludes that the proposed SA methods provide more accurate and consistent qs and qb predictions than that by the β-method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.