Abstract

Using a dendrochronological approach, we determined the resistance, recovery and resilience of the radial stem increment towards episodes of growth decline, and the accompanying variation of 13C discrimination against atmospheric CO2 (Δ13C) in tree rings of two palaeotropical pine species. These species co-occur in the mountain ranges of south–central Vietnam (1500–1600 m a.s.l.), but differ largely in their areas of distribution (Pinus kesiya from northeast India to the Philippines; P. dalatensis only in south and central Vietnam and in some isolated populations in Laos). For P. dalatensis, a robust growth chronology covering the past 290 years could be set up for the first time in the study region. For P. kesiya, the 140-year chronology constructed was the longest that could be established to date in that region for this species. In the first 40 years of the trees’ lives, the stem diameter increment was significantly larger in P. kesiya, but levelled off and even decreased after 100 years, whereas P. dalatensis exhibited a continuous growth up to an age of almost 300 years. Tree-ring growth of P. kesiya was negatively related to temperature in the wet months and season of the current year and in October (humid transition period) of the preceding year and to precipitation in August (monsoon season), but positively to precipitation in December (dry season) of the current year. The P. dalatensis chronologies exhibited no significant correlation with temperature or precipitation. Negative correlations between BAI and Δ13C indicate a lack of growth impairment by drought in both species. Regression analyses revealed a lower resilience of P. dalatensis upon episodes of growth decline compared to P. kesiya, but, contrary to our hypothesis, mean values of the three sensitivity parameters did not differ significantly between these species. Nevertheless, the vigorous growth of P. kesiya, which does not fall behind that of P. dalatensis even at the margin of its distribution area under below-optimum edaphic conditions, is indicative of a relatively high plasticity of this species towards environmental factors compared to P. dalatensis, which, in tendency, is less resilient upon environmental stress even in the “core” region of its occurrence.

Highlights

  • The P. dalatensis chronologies exhibited no significant correlation with temperature or precipitation

  • Regression analyses revealed a lower resilience of P. dalatensis upon episodes of growth decline compared to P. kesiya, but, contrary to our hypothesis, mean values of the three sensitivity parameters did not differ significantly between these species

  • P. kesiya, which does not fall behind that of P. dalatensis even at the margin of its distribution area under below-optimum edaphic conditions, is indicative of a relatively high plasticity of this species towards environmental factors compared to P. dalatensis, which, in tendency, is less resilient upon environmental stress even in the “core” region of its occurrence

Read more

Summary

Introduction

Pinus kesiya is widely distributed from northeast India to the Philippines This wide distribution is due to its adaptability to stressful environmental conditions including acidic, nutrient-poor soils, low water availability and exposure to wildfire [1,2], it grows best on relatively humid, well-drained soils with an adequate nutrient supply [3]. Due to its high adaptability and relatively fast growth, especially in its early life stages, this species is being used for nature-oriented reforestation even at relatively dry and acidic sites [2]. It is a lightdemanding species [3] that typically grows in open forests [1]. In Vietnam, this species occurs across the country, typically in drier montane areas [4], with the centres of occurrence in Lam Dong Province of Vietnam’s southern central part and in Ha Giang Province in the north [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call