Abstract

Background: Lagoons and wastewater constitute aquatics environments which receive or accounts for most domestic discharges. These waters constitute an important ecosystem for the proliferation of microorganisms. The microorganisms that harbor these waters can provide information on the persistence of certain diseases in the human population, including gastrointestinal infections such as Cholera. The genus Vibrio contains pathogenic aquatic bacteria found in lagoon bays and wastewater. Objective: The main objectives of this work were to confirm the presence of Vibrio spp. in lagoon bays and sewage of the city of Abidjan over the entire interepidemic period, and to evaluate their sensitivity to commonly used antibiotics. Methods: The isolation and identification of the microorganisms were carried out using classical bacteriological techniques (biochemical test, API 20E gallery). When necessary, serotyping was carried out using agglutination tests on slides. Antibiotic susceptibility testing was carried out using the Kirby-Bauer disk diffusion (KBDD) method. Results: This study identified 12 bacterial strains, 9/12 (75%) of which were Vibrio sp. strains. Two Vibrio species, namely Vibrio parahaemolyticus 2/9 (22%) and 7/9 Vibrio cholerae (78%) were identified. V. cholerae was isolated from both sewage and lagoon waters with dominance of serotype O1. The V. cholerae O1 and non-O1 strains showed a high level of resistance to sulfonamides, quinolones, fluoroquinolones, and moderate sensitivity to penicillins and tetracyclines. Resistant V. parahaemolyticus strains were also identified. Conclusion: The increased resistance of these bacteria could pose potential problems in the treatment of epidemics and other communicable diseases. The emergence of these multi-drug resistant strains of the genus Vibrio should prompt the Ivorian health authorities to maintain an epidemiological surveillance network for waterborne diseases throughout the country and to continue bacteriological sampling to monitor Vibrio's sensitivity to antibiotics.

Highlights

  • Discharges of untreated wastewater to the environment can be a source of infection by pathogenic microorganisms from a variety of sources [1]

  • V. cholerae was isolated from both sewage and lagoon waters with dominance of serotype O1

  • The presence of V. cholerae in the waters of lagoon bays and sewage suggests faecal contamination caused by poor excreta management and open defecation at the edge of lagoons or in vacant lots at the edge of neighborhoods [28]

Read more

Summary

Introduction

Discharges of untreated wastewater to the environment can be a source of infection by pathogenic microorganisms from a variety of sources [1]. It should be noted that 78% of African cities do not have any formal sewerage disposal and treatment services, and where they exist, most of them are outdated [5]. In these countries, the inadequacy of sanitation networks and the fact that the majority of the population (more than 30% in Abidjan) is not connected to the sewerage system mean that untreated wastewater is discharged into the natural environment [4]. Lagoons and wastewater constitute aquatics environments which receive or accounts for most domestic discharges These waters constitute an important ecosystem for the proliferation of microorganisms. The genus Vibrio contains pathogenic aquatic bacteria found in lagoon bays and wastewater

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.