Abstract
Dormant spores of the various Bacillus species, including B. subtilis, are 5 to 50 times more resistant to UV radiation than are the corresponding growing cells. This elevated spore UV resistance is due to: a) the photochemistry of DNA within spores, as UV generates few if any cyclobutane dimers, but rather a photoproduct (Fig. 1) called spore photoproduct (SP; 5-thyminyl-5,6-dihydrothymine); and b) DNA repair, in particular SP-specific repair, during spore germination. The novel UV photochemistry of spore DNA is largely due to its saturation with a group of small, acid-soluble proteins (SASP), which are unique to spores and whose binding alters the DNA conformation and thus its photochemistry. SP-specific repair is also unique to spores and is carried out by a light-independent SP-lyase, an iron-sulfur protein that utilizes S-adenosylmethionine to catalyze SP monomerization without DNA backbone cleavage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.