Abstract

Networks of silver nanowires appear set to replace expensive indium tin oxide as the transparent conducting electrode material in next generation devices. The success of this approach depends on optimizing the material conductivity, which until now has largely focused on minimizing the junction resistance between wires. However, there have been no detailed reports on what the junction resistance is, nor is there a known benchmark for the minimum attainable sheet resistance of an optimized network. In this paper, we present junction resistance measurements of individual silver nanowire junctions, producing for the first time a distribution of junction resistance values and conclusively demonstrating that the junction contribution to the overall resistance can be reduced beyond that of the wires through standard processing techniques. We find that this distribution shows the presence of a small percentage (6%) of high-resistance junctions, and we show how these may impact the performance of network-based materials. Finally, through combining experiment with a rigorous model, we demonstrate the important role played by the network skeleton and the specific connectivity of the network in determining network performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.