Abstract

The interaction of covalently coupled hyaluronic acid, alginic acid, and pectic acid with proteins, cells (hematopoietic KG1a and Jurkat cells), and marine organisms (algal zoospores and barnacle cypris larvae) is compared. In contrast to cells and proteins for which such polysaccharide coatings are known for their antiadhesive properties, marine algal spores and barnacle cyprids were able to colonize the surfaces. Of the three polysaccharides, hyaluronic acid showed the lowest settlement of both Ulva zoopores and barnacles. Photoelectron spectroscopy reveals that the polysaccharide coatings tend to bind bivalent ions, such as calcium, from salt water. Such pretreatment with a high salinity medium significantly changes the protein and hematopoietic cell resistance of the surfaces. Complexation of bivalent ions is therefore considered as one reason for the decreased resistance of polysaccharide coatings when applied in the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.