Abstract

Oxidized low-density lipoprotein (Ox-LDL)-induced macrophage pyroptosis is critical in atherosclerosis inflammation and plaque instability. It has been reported that mitochondrial (mt)DNA-depleted (rho0) cells demonstrate resistance to apoptosis. However, little is known about the susceptibility of rho0 cells to Ox-LDL-induced macrophage pyroptosis. Pyroptosis, a caspase-1-dependent programmed cell death, which compromises membrane integrity, cleaves pro-interleukin (IL)‑1β and pro‑IL‑18 into IL‑1β and IL‑18, respectively and releases damage‑associated molecular pattern molecules, is triggered by a variety of stimuli, including Ox‑LDL. In the present study, the expression levels of cleaved caspase‑1 and IL‑1β in Ox‑LDL‑treated J774A.1 rho0 cells were observed to be significantly decreased when compared with Ox‑LDL‑treated J774A.1 normal cells. Furthermore, J774A.1 rho0 cells exhibited a significant reduction in the ratios of dead cells and lactate dehydrogenase release following Ox‑LDL stimulation compared with the J774A.1 normal cells. In addition, the loss of mtDNA did not influence Ox‑LDL‑induced cholesterol accumulation in J774A.1 rho0 cells, which was observed by Oil RedO staining and CHOD‑PAP assay. Finally, J774A.1 rho0 cells exhibited reduced reactive oxygen species (ROS) production and were capable of maintaining the mitochondrial membrane potential following Ox‑LDL treatment. Thus, the results indicate that the loss of mtDNA potentially rendered murine macrophage J774A.1 resistant to Ox‑LDL‑induced pyroptosis by mitigating NACHT, LRR and PYD domains-containing protein3 inflammasome activation through reducing ROS production. In addition, mtDNA depletion did not interrupt Ox-LDL-induced intracellular lipid accumulation and continued to maintain the mitochondrial membrane potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.