Abstract

A resistant strain (MRS) of Sitobion miscanthi was cultured by continuous selection with malathion for over 40 generations. The MRS exhibited 32.7-fold resistance to malathion compared to the susceptible strain (MSS) and 13.5-fold, 2.9-fold and 4.8-fold cross-resistance for omethoate, methomyl and beta-cypermethrin, respectively. However, no cross-resistance was found to imidacloprid in this resistant strain. The realized heritability for malathion resistance was 0.02. Inhibitors of esterase activity, both triphenyl phosphate (TPP) and S,S,S,-tributyl phosphorotrithioate (DEF) as synergists, exhibited significant synergism to malathion in the MRS strain, with 11.77-fold and 5.12-fold synergistic ratios, respectively, while piperonyl butoxide (PBO) and diethyl maleate (DEM) showed no significant synergism in the MRS strain. The biochemical assay indicated that carboxylesterase activity was higher in MRS than in MSS. These results suggest that the increase in esterase activity might play an important role in S. miscanthi resistance to malathion. Imidacloprid could be used as an alternative for malathion in the management of wheat aphid resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.