Abstract
Abstract A range of antimicrobial compounds (bactericides) commonly termed biocides, microbicides, sanitizers, antiseptics and disinfectants are available, all of which are claimed by their producers to kill bacteria. Resistance has been defined as the temporary or permanent ability of an organism and its progeny to remain viable and/or multiply under conditions that would destroy or inhibit other members of the strain. Bacteria may be defined as resistant when they are not susceptible to a concentration of antibacterial agent used in practice. Traditionally, resistance refers to instances where the basis of increased tolerance is a genetic change, and where the biochemical basis is known. Antimicrobial substances target a range of cellular loci, from the cytoplasmic membrane to respiratory functions, enzymes and the genetic material. However, different bacteria react differently to bactericides, either due to inherent differences such as unique cell envelope composition and non-susceptible proteins, or to the development of resistance, either by adaptation or by genetic exchange. At low concentrations bactericides often act bacteriostatically, and are only bacteriocidal at higher concentrations. For bactericides to be effective, they must attain a sufficiently high concentration at the target site in order to exert their antibacterial action. In order to reach their target site(s), they must traverse the outer membrane of the gram negative bacteria. Bacteria with effective penetration barriers to biocides generally display a higher inherent resistance than those bacteria which are readily penetrated. The rate of penetration is linked to concentration, so that a sufficiently high bactericide concentration will kill bacteria with enhanced penetration barriers. It has been indicated that susceptible bacterial isolates acquire increased tolerance to bactericides following serial transfer in sub-inhibitory concentrations. Whereas the basis of bacterial resistance to antibiotics is well know, that of resistance to antiseptics, disinfectants and food preservatives is less well understood. Three mechanisms of resistance that have been reported include: • limited diffusion of antimicrobial agents through the biofilm matrix, • interaction of the antimicrobial agents with the biofilm matrix (cells and polymer), • enzyme mediated resistance, • level of metabolic activity within the biofilm • genetic adaptation • efflux pumps and • outer membrane structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Biodeterioration & Biodegradation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.