Abstract

In recent years, the PD-1/PD-L1 axis blockade has become a very promising therapy with significant clinical benefits for multiple tumor types. However, some patients still do not respond sufficiently to PD-1/PD-L1 targeted monotherapy. Therefore, investigating the mechanism of PD-1 blockade resistance will assist in exploring new immunotherapy strategies, controlling the progress of the disease, and thus bringing more sustainable survival benefits to patients. The tumor-immune cycle is divided into the following seven steps: the release of cancer antigens, cancer antigen presentation, priming and activation, trafficking of T cells to tumors, infiltration of T cells into tumors, recognition of cancer cells by T cells, and killing of cancer cells. Given that PD-1/PD-L1 blockade is primarily involved in step 7, any abnormalities in the previous steps may affect the efficacy of PD-1/PD-L1 inhibitors and lead to drug resistance. This review discussed the resistance mechanisms of PD-1/PD-L1 blockade in each cancer-immunity step to finding a more suitable treatment population and an optimized combination therapy to exert immunotherapy in tumor treatment to a greater extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.