Abstract

As recently indiscriminate abuse of existing antibiotics in both clinical and veterinary treatment leads to proliferation of antibiotic resistance in microbes and poses a dilemma for the future treatment of such bacterial infection, antimicrobial resistance has been considered to be one of the currently leading concerns in global public health, and reported to widely spread and extended to a large variety of microorganisms. In China, as one of the currently worst areas for antibiotics abuse, the annual prescription of antibiotics, including both clinical and veterinary treatment, has approaching 140 gram per person and been roughly estimated to be 10 times higher than that in the United Kingdom, which is considered to be a potential area for the emergence of “Super Bugs”. Based on the integrons surveillance in Guangzhou, China in the past decade, this review thus aimed at summarizing the role of integrons in the perspective of both clinical setting and environment, with the focus on the occurrence and prevalence of class 1, 2 and 3 integrons.

Highlights

  • Antibiotics, as compounds or substances that kill or inhibit the growth of microorganisms, have been regarded as one of the greatest contributions to medicine and humanity in the 20th century and used to treat a wide range of infectious diseases caused by bacteria, for both animals and human beings [1,2,3,4]

  • As recently indiscriminate abuse of existing antibiotics in both clinical and veterinary treatment leads to proliferation of antibiotic resistance in microbes and poses a dilemma for the future treatment of such bacterial infection, antimicrobial resistance has been considered to be one of the currently leading concerns in global public health, and reported to widely spread and extended to a large variety of microorganisms, which will result in an increasing number of clinical failures in bacterial mediated diseases [2, 3, 5]

  • Concluding remarks Antimicrobial resistance still remains the leading concern in global public health and food safety, as bacteria are capable of obtaining resistance gene through either genetic mutation or horizontal transfer of resistance genes

Read more

Summary

Introduction

Antibiotics, as compounds or substances that kill or inhibit the growth of microorganisms, have been regarded as one of the greatest contributions to medicine and humanity in the 20th century and used to treat a wide range of infectious diseases caused by bacteria, for both animals and human beings [1,2,3,4]. Since the first report in 1989 [10], the molecular mechanism and mobility of integrons, including the excision and integration for gene cassettes, had been investigated. Structure An integron is generally defined by the presence of an integrase gene (intI) and a proximal primary recombination site (attI) (Fig. 1) [2, 14]. The amino acid sequences of IntI integrases have been used as a basis for dividing integrons into ‘classes’, with those carrying intI1 defined as ‘class 1’, intI2 as ‘class 2’, intI3 as ‘class 3’, etc. IntIcatalysed recombination between attI and/or attC sites results in insertion or excision of cassettes (Fig. 1).

Objectives
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.