Abstract

We investigated the effect of resistance exercise and feeding on the activation of signaling proteins involved in translation initiation. Nine young men (23.7+/-0.41 yr; BMI=25.5+/-1.0 kg/m2; means+/-SE) were tested twice after they performed a strenuous bout of unilateral resistance exercise, such that their contralateral leg acted as a nonexercised comparator, in either the fasted and fed [1,000 kJ, each 90 min (3 doses): 10 g protein, 41 g carbohydrate, 4 g fat] states. Muscle biopsies were obtained 6 h postexercise from both legs, resulting in four experimental conditions: rest-fasted, rest-fed, exercise-fasted, and exercise-fed. Feeding increased PKB/Akt (Ser473) phosphorylation (P<0.05), while exercise increased the phosphorylation of Akt and the downstream 70 kDa S6 protein kinase (p70S6K1, Thr389) and ribosomal protein S6 (rpS6, Ser235/236, Ser240/244; all P<0.05). The combination of resistance exercise and feeding increased the phosphorylation of p70S6K1 (Thr389) and rpS6 (Ser240/244) above exercise alone (P<0.05). Exercise also reduced phosphorylation of the catalytic epsilon subunit of eukaryotic initiation factor 2B (eIF2Bepsilon, Ser540; P<0.05). Mammalian target of rapamycin (mTOR, Ser2448), glycogen synthase kinase-3beta (GSK-3beta, Ser9), and focal adhesion kinase (FAK, Tyr576/577) phosphorylation were unaffected by either feeding or resistance exercise (all P>0.14). In summary, feeding resulted in phosphorylation of Akt, while resistance exercise stimulated phosphorylation of Akt, p70S6K1, rpS6, and dephosphorylation eIF2Bepsilon with a synergistic effect of feeding and exercise on p70(S6K1) and its downstream target rpS6. We conclude that resistance exercise potentiates the effect of feeding on the phosphorylation and presumably activation of critical proteins involved in the regulation of muscle protein synthesis in young men.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.