Abstract

Let $G=(V,E)$ be a strongly connected and balanced digraph with vertex set $V=\{1,\dotsc,n\}$. The classical distance $d_{ij}$ between any two vertices $i$ and $j$ in $G$ is the minimum length of all the directed paths joining $i$ and $j$. The resistance distance (or, simply the resistance) between any two vertices $i$ and $j$ in $V$ is defined by $r_{ij}:=l_{ii}^{\dagger}+l_{jj}^{\dagger}-2l_{ij}^{\dagger}$, where $l_{pq}^{\dagger}$ is the $(p,q)^{\rm th}$ entry of the Moore-Penrose inverse of $L$ which is the Laplacian matrix of $G$. In practice, the resistance $r_{ij}$ is more significant than the classical distance. One reason for this is, numerical examples show that the resistance distance between $i$ and $j$ is always less than or equal to the classical distance, i.e., $r_{ij} \leq d_{ij}$. However, no proof for this inequality is known. In this paper, it is shown that this inequality holds for all directed cactus graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.