Abstract

Objective: Antibiotics play an essential role in the treatment and prevention of diseases in pig farms. However, the irrational use of antibiotics leads to the emergence of multi-drug resistance of bacteria, which poses a critical threat to the efficacy of antibiotic treatments. Therefore, the study is designed to analyze the drug resistance of pathogenic Escherichia coli isolated from large-scale pig farms in East China, which provides a theoretical basis for precisely targeted clinical drugs in swine farms.Method: The pathogenic E. coli were isolated and identified from clinical samples of swine farms, and the drug resistance of pathogenic E. coli was detected by antimicrobial susceptibility test (AST) and minimum inhibitory concentration test (MIC). Moreover, the prevalence of plasmid-mediated β-lactam resistance genes was analyzed by PCR.Results: A total of 67 pathogenic E. coli were isolated from 152 samples collected from 20 large-scale pig farms in East China. All isolated pathogenic E. coli are associated with severe drug resistance. Moreover, 70% of isolated pathogenic E. coli is resistant to more than four antibiotics. Besides, there were 19 serotypes including O2, O4, O5, O6, O14, O26, O38, O42, O49, O57, O92, O93, O95, O101, O121, O131, O143, O158, and O161, of which the O4 and O92 serotype were the main serotypes in swine farms. The main extended-spectrum beta-lactamases (ESBLs)-encoding genes in East China were blaCTX−M, blaTEM, and blaOXA by the detection of the ESBLs encoding genes of porcine pathogenic E. coli. The conjugation assays showed that a total of 30 transconjugants were obtained by conjugation, which indicated that drug resistance genes could be transmitted horizontally through conjugative plasmids.Conclusion: The isolated pathogenic E. coli were all multi-drug resistant, and especially O4 and O92 were the main serotypes. The β-lactam resistance genes were prevalent in large-scale pig farms in East China, which provided a theoretical basis for the prevention and control of pig-derived pathogenic E. coli in the future.

Highlights

  • Escherichia coli, gram-negative bacteria, is one representative number of the genus E. coli

  • A total of 760 mice were randomly assigned to 152 groups and each group was inoculated with one E. coli isolates

  • The results showed that there was no direct correlation between serotype and genotype of drug resistance gene

Read more

Summary

Introduction

Escherichia coli, gram-negative bacteria, is one representative number of the genus E. coli. It is the leading microbial community in the intestinal tract of common animals, and its survival mode is mainly heterotrophic [1]. Livestock and poultry infected by pathogens often have local or systemic inflammatory symptoms, severe diarrhea, and even sepsis [2]. Colibacillosis has become a stubborn disease in the modern breeding industry because of its high morbidity and mortality [3,4,5]. Overuse and misuse of broad-spectrum antibiotics accelerate the growing resistance and even emergence of a superbug [6,7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.