Abstract
A crucial factor in the long-term survival of benthic macrophyte communities under light-reduction stress is how they balance carbon metabolism during photosynthesis and respiration. In turn, the dissolved organic carbon (DOC) released by these communities, which can be highly light-dependent, stands as a source of carbon, fuelling marine communities and playing an important role in the ocean carbon sequestration. This is the first study to evaluate light-reduction stress and recovery in the seagrass Zostera noltei and the macroalga Caulerpa prolifera. Light reduction led to a significant decrease in the production of both communities from autotrophic to heterotrophic. Results indicated that most of the DOC released by vegetated coastal communities comes from photosynthetic activity, and that the net DOC fluxes can be greatly affected by shading events. Finally, both communities showed resilience underpinned by high recovery but low resistance capacity, with C. prolifera showing the highest resilience to unfavourable light conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.