Abstract

Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice.Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline.Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation.Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.

Highlights

  • Regular exercise is strongly associated with a lower risk of mortality (Myers et al, 2002), in addition to a reduced incidence of most prevalent chronic pathologies in developed countries (Fiuza-Luces et al, 2013; Pedersen and Saltin, 2015)

  • When considering RES group, we found that the Proteobacteria taxon Desulfovibrio sp. had a negative correlation with resistance performance (Figure 4A), while the genus Alistipes was positively correlated (Figure 4B)

  • We have observed that some taxonomic groups are differently affected by the model of exercise, which opens the possibility for the definition of resistance and endurance exercise gut microbiome profiles

Read more

Summary

Introduction

Regular exercise is strongly associated with a lower risk of mortality (Myers et al, 2002), in addition to a reduced incidence of most prevalent chronic pathologies in developed countries (Fiuza-Luces et al, 2013; Pedersen and Saltin, 2015). It has been described that regular exercise, mainly endurance (aerobic) exercise, modifies both the general diversity and the abundance of certain gut bacterial phyla or families (Barton et al, 2018). These changes are independent of diet, but they can be reversed once the exercise regime is ceased (Allen et al, 2018). The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call