Abstract

A panel of CD4(+) T-cell clones were generated from peripheral blood lymphocytes from a patient with a nonprogressing infection of human immunodeficiency virus type 1 (HIV-1) by using herpesvirus saimiri as described recently. By and large, all of the clones expressed an activated T-cell phenotype (Th class 1) and grew without any further stimulation in interleukin-2-containing medium. None of these clones produced HIV-1, and all clones were negative for HIV-1 DNA. When these clones were infected with primary and laboratory (IIIB) strains of HIV-1 with syncytium-inducing (SI) phenotypes, dramatic variation of virus production was observed. While two clones were highly susceptible, other clones were relatively or completely resistant to infection with SI viruses. The HIV-resistant clones expressed CXCR4 coreceptors and were able to fuse efficiently with SI virus env-expressing cells, indicating that no block to virus entry was present in the resistant clones. Additionally, HIV-1 DNA was detectable after infection of the resistant clones, further suggesting that HIV resistance occurred in these clones after virus entry and probably after integration. We further demonstrate that the resistant clones secrete a factor(s) that can inhibit SI virus production from other infected cells and from a chronically infected producer cell line. Finally, we show that the resistant clones do not express an increased amount of ligands (stromal-derived factor SDF-1) of CXCR4 or other known HIV-inhibitory cytokines. Until now, the ligands of HIV coreceptors were the only natural substances that had been shown to play antiviral roles of any real significance in vivo. Our data from this study show that differential expression of another anti-HIV factor(s) by selected CD4(+) T cells may be responsible for the protection of these cells against SI viruses. Our results also suggest a novel mechanism of inhibition of SI viruses that acts at a stage after virus entry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call