Abstract

AbstractThe art of resin transfer molding (RTM) process optimization requires a clear understanding of how the process performance is affected by variations in some important process parameters. In this paper, maximum pressure and mold filling time of the RTM process are considered as characteristics of the process performance to evaluate the process design. The five process parameters taken into consideration are flow rate, fiber volume fraction, number of gates, gate location, and number of vents. An integrated methodology was proposed to investigate the effects of process prameters on maximum pressure and mold filling time and to find the optimum processing conditions. The method combines numerical simulation and design of experiments (DOE) approach and is applied to process design for a cylindrical composite part. Using RTM simulation, a series of numerical experiments were conducted to predict maximum pressure and mold filling time of the RTM process. A half‐fractional factorial design was conducted to identify the significant factors in the RTM process. Furthermore, the empirical models and sensitivity coefficients for maximum pressure and mold filling time were developed. Comparatively close agreements were found among the empirical approximations, numerical simulations, and actual experiments. These results were further utilized to find the optimal processing conditions for the example part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.