Abstract

During autoclave processing of composites for high‐performance applications, it is mandatory to limit the porosities, which mainly depend on the hydrostatic pressure in the resin. This pressure, which is not constant during heating being affected either by resin flow either by elastic stress in the fiber stack, can be significantly different from the autoclave pressure. Modeling of resin flow and stress in the fiber stack is a key issue for prediction of the resin hydrostatic pressure, which can be related to void development. Also, the viscosity of the thermosetting matrix is a relevant parameter since it is not constant but evolves during curing going through a minimum and then increasing to an infinite value at gel point. In this work, a viscoelastic model is adopted to calculate the evolution of resin pressure during an autoclave cycle up to gelation, accounting for viscosity and degree of reaction changes. Therefore, the model includes a kinetic and rheological model whose input parameters have been experimentally determined by Differential Scanning Calorimetry and rheological analysis. The predicted resin pressure for three case studies associated to different composite and bleeder thicknesses and reinforcement materials have been discussed. POLYM. ENG. SCI., 57:631–637, 2017. © 2017 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call