Abstract

All resin acids are diterpenoid carboxylic acids that are components of softwood extractives and they are known to contribute to much of the toxicity of pulp mill effluents. Although biological treatment systems can efficiently remove resin acids during normal operating conditions, resin acid breakthroughs occasionally occur. Recently we isolated five bacterial strains from bleach kraft effluents that degrade dehydroabietic acid (DHA), a resin acid commonly found in effluents. In this study we examined the ability of two bacterial strains (BKME 5 and BKME 9) to grow on chemithermomechanical pulping (CTMP) effluent and degrade DHA. Both of the strains could grow on CTMP effluents, but did not degrade DHA. COD measurement showed that both strains used other organic substrates in CTMP effluent. When nutrients (NH4⊕, PO43−, minerals and vitamins) were added to the effluent, both growth and DHA degradation increased significantly. The strains used DHA and other organic sources in the CTMP effluent simultaneously. The stimulated growth resulting from use of other organic material did not increase the rate of DHA degradation. It was found that ammonium played an important role in the DHA degradation of both strains. Without added ammonium, DHA degradation did not occur. Other nutrients also played important roles in DHA degradation by BKME 9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call