Abstract
Recent developments in blockchain technology have inspired innovative new designs in resilient distributed and database systems. At their core, these blockchain applications typically use Byzantine fault-tolerant consensus protocols to maintain a common state across all replicas, even if some replicas are faulty or malicious. Unfortunately, existing consensus protocols are not designed to deal with geo-scale deployments in which many replicas spread across a geographically large area participate in consensus. To address this, we present the Geo-Scale Byzantine Fault-Tolerant consensus protocol (GeoBFT). GeoBFT is designed for excellent scalability by using a topological-aware grouping of replicas in local clusters, by introducing parallelization of consensus at the local level, and by minimizing communication between clusters. To validate our vision of high-performance geo-scale resilient distributed systems, we implement GeoBFT in our efficient ResilientDB permissioned blockchain fabric. We show that GeoBFT is not only sound and provides great scalability, but also outperforms state-of-the-art consensus protocols by a factor of six in geo-scale deployments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.