Abstract
In this paper, we have proposed a novel resilient reinforcement learning approach for solving robust optimal output regulation problems of a class of partially linear systems under both dynamic uncertainties and denial-of-service attacks. Fundamentally different from existing works on reinforcement learning, the proposed approach rigorously analyzes both the resilience of closed-loop systems against attacks and the robustness against dynamic uncertainties. Moreover, we have proposed an original successive approximation approach, named hybrid iteration, to learn the robust optimal control policy, that converges faster than value iteration, and is independent of an initial admissible controller. Simulation results demonstrate the efficacy of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.