Abstract

This paper presents the results of research conducted to investigate the Resilient Modulus (Mr) of unbound aggregates used as pavement layer in Senegal (West Africa) as well as the effect of water content and density on the Resilient Modulus of the materials tested. Four different aggregates was collected from different sites within Senegal and then subjected to repeated load triaxial tests. Test results showed that the Bandia limestone is around 44% stiffer than the basalt, and 71% to 104% stiffer that the Black and the Red quartzites (GNB and GRB). The basalt is 21% to 43% stiffer than the GNB and the GRB. Basalt specimens compacted at Wopt– 2% were 30% stiffer than basalt specimens compacted at Wopt and 40% stiffer than those com- pacted at Wopt+ 2%. The Summary Resilient Modulus (SRM) at Wopt– 2% is 22% higher than SRM at Wopt and 35% higher than SRM at Wopt+ 2% for the GRB and the GNB. The SRM at Wopt– 2% is 30% higher than SRM at Wopt and 40% higher than SRM at Wopt+ 2%, for the Basalt. For the Bandia limestone, the SRM at Wopt– 2% is 81% higher than SRM at Wopt and 126% higher than SRM at Wopt+ 2%. Results show also that the Resilient Modulus increases around 25% when relative density increases from 77% to 119% and the variation is more significant at high stress states than at low stress state. Results of statistical analysis and coefficients of determination (R2) showed that the Uzan and NCHRP models are more suitable to predict the Resilient Modulus of the aggregates tested.

Highlights

  • Achieving a proper modulus for an unbound base course is important for pavement performance [1]

  • This paper presents the results of research conducted to investigate the Resilient Modulus (Mr) of unbound aggregates used as pavement layer in Senegal (West Africa) as well as the effect of water content and density on the Resilient Modulus of the materials tested

  • Test results showed that the Bandia limestone is around 44% stiffer than the basalt, and 71% to 104% stiffer that the Black and the Red quartzites (GNB and GRB)

Read more

Summary

Introduction

State of the material in the pavement, but from characteristics of its aggregates. No studies on the mechanical behavior of crushed granular materials under cyclic loading has been conducted in Senegal where the interest of this work which will investigate the Resilient Modulus of granular materials to have input parameters for a mechanistic design approach in Senegal. These results will be the first obtained on unbound granular material from Senegal

Background
Materials
Resilient Modulus Test Procedure
Test Results and Analyses
Regression Analysis of the Resilient Modulus Test Results
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.