Abstract
In this article, a robust model predictive control strategy is developed for networked cyber-physical systems under false data injections. The main feature of the proposed scheme relies on the capability to mitigate undesired system behaviors due to external malicious actions. This is achieved by showing that set-membership conditions allow us to quickly detect data integrity anomalies and, as a consequence, to implement adequate countermeasures. The core of the resulting solution exploits receding horizon and set-theoretic control ideas so that the resilient nature of the virtual control moves is formally put in light. Simulations on a <inline-formula><tex-math notation="LaTeX">$B747-100/200$</tex-math></inline-formula> aircraft model show effectiveness and merits of the proposed resilient control architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.