Abstract
This article is concerned with distributed resilient load frequency control (LFC) for multi-area power interconnection systems against jamming attacks. First, considering uncertainties and high dimension nonlinearity, the model-free adaptive control (MFAC) model is adopted for the power system, in which only input and output (I/O) data are used. Second, jamming attacks are modeled in a stochastic process, and a multistep predictive compensation algorithm is developed to mitigate the impact of jamming attacks. Then, the distributed MFAC protocol with predictive compensation algorithm is designed such that the frequency tracking errors under the predictive compensation algorithm of multi-area power interconnection systems converge consensually into a small neighborhood of origin in the mean square sense. Simulation results show the effectiveness of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.