Abstract

Network topology identification (TI) is an essential function for distributed energy resources management systems (DERMS) to organize and operate widespread distributed energy resources (DERs). In this paper, discriminant analysis (DA) is deployed to develop a network TI function that relies only on the measurements available to DERMS. The propounded method is able to identify the network switching configuration, as well as the status of protective devices. Following, to improve the TI resiliency against the interruption of communication channels, a quadratic programming optimization approach is proposed to recover the missing signals. By deploying the propounded data recovery approach and Bayes' theorem together, a benchmark is developed afterward to identify anomalous measurements. This benchmark can make the TI function resilient against cyber-attacks. Having a low computational burden, this approach is fast-track and can be applied in real-time applications. Sensitivity analysis is performed to assess the contribution of different measurements and the impact of the system load type and loading level on the performance of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.