Abstract

This paper studies the control problem for a continuous-time networked system with non-linearity in the state equation as well as in the input, as saturation. The system is considered under denial-of-service (DoS), attacks which cause the blockage of input and/or output components in the overall closed-loop model. An event-triggering scheme that is resilient in nature, along with an observer-based control, has been considered under DoS attacks. The resultant scheme ensures efficient network resources and excludes Zeno behavior naturally due to the presence of a minimum positive interevent delay. Then, an event-based switched non-linear model is presented to address both the event-triggering scheme and the presence of DoS blocking attacks. A piece-wise Lyapunov–Krasovskii functional method on the described non-linear model, resulting in the switched system, is considered for achieving an exponentially stable response by driving the required feasibility conditions. In the presence of a non-linear system with saturation in the actuator, the presented design establishes quantitative relationships among the exponential decay rate, active/sleeping intervals of attacks, parameters of the event-triggering condition, and sampling period of the system. After that, linear matrix inequalities are presented for designing an event-triggered controller with an observer, while the design also includes the region of convergence for dealing with the input non-linearity. Finally, comparative results for an offshore structure model with non-linearity in states as well as in actuator, are demonstrated to verify the results of the control scheme that is developed. It has been verified that our design is less conservative than the previous designs, and can handle the non-linearities in the dynamics of plant and actuator saturation more efficiently, while DoS attacks are also present. By applying our proposed method, the overshoot and undershoot are less than ±2.5 percent, while system states converge to the origin within 55 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.