Abstract

Many IoT networks, including for battlefield deployments, involve the deployment of resource-constrained sensors with varying degrees of redundancy/overlap (i.e., their data streams possess significant spatiotemporal correlation). Collaborative intelligence, whereby individual nodes adjust their inferencing pipelines to incorporate such correlated observations from other nodes, can improve both inferencing accuracy and performance metrics (such as latency and energy overheads). Using realworld data from a multicamera deployment, we first demonstrate the significant performance gains (up to 14% increase in accuracy) from such collaborative intelligence, achieved through two different approaches: (a) one involving statistical fusion of outputs from different nodes, and (b) another involving the development of new collaborative deep neural networks (DNNs). We then show that these collaboration-driven performance gains are susceptible to adversarial behaviour by one or more nodes, and thus need resilient mechanisms to provide robustness against such malicious behaviour. We also introduce an under-development testbed at Singapore Management University (SMU), specifically designed to enable real-world experimentation with such collaborative IoT intelligence techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.