Abstract
We investigate the problems of resilient cluster consensus in directed networks under three types of multiagent dynamics, namely, continuous-time multiagent systems, discrete-time multiagent systems, and switched multiagent systems composed of both continuous-time and discrete-time components. Resilient cluster censoring strategies are proposed to ensure cluster consensus against locally bounded Byzantine nodes in a purely distributed manner, where neither the number/identity of Byzantine nodes nor the division of clusters is assumed. We do not require complicated algebraic conditions or any balance conditions over intercluster structures, distinguishing the current work from previous results on cluster consensus problems besides <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a fortiori</i> the attack-tolerant feature. Sufficient conditions are established in all the three scenarios based on the graph robustness. Furthermore, we solve the heterogenous cluster robustness problems and resilient scaled cluster consensus problems as extensions. The theoretical results are illustrated through numerical examples including the Santa Fe collaboration network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.