Abstract
The timely diagnosis of medical conditions, particularly diabetic retinopathy, relies on the identification of retinal microaneurysms. However, the commonly used retinography method poses a challenge due to the diminutive dimensions and limited differentiation of microaneurysms in images. Automated identification of microaneurysms becomes crucial, necessitating the use of comprehensive ad-hoc processing techniques. Although fluorescein angiography enhances detectability, its invasiveness limits its suitability for routine preventative screening. This study proposes a novel approach for detecting retinal microaneurysms using a fundus scan, leveraging circular reference-based shape features (CR-SF) and radial gradient-based texture features (RG-TF). The proposed technique involves extracting CR-SF and RG-TF for each candidate microaneurysm, employing a robust back-propagation machine learning method for training. During testing, extracted features from test images are compared with training features to categorize microaneurysm presence. The experimental assessment utilized four datasets (MESSIDOR, Diaretdb1, e-ophtha-MA, and ROC), employing various measures. The proposed approach demonstrated high accuracy (98.01%), sensitivity (98.74%), specificity (97.12%), and area under the curve (91.72%). The presented approach showcases a successful method for detecting retinal microaneurysms using a fundus scan, providing promising accuracy and sensitivity. This non-invasive technique holds potential for effective screening in diabetic retinopathy and other related medical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.