Abstract

Artificial intelligence (AI)-based clinical decision support systems are gaining momentum by relying on a greater volume and variety of secondary use data. However, the uncertainty, variability, and biases in real-world data environments still pose significant challenges to the development of health AI, its routine clinical use, and its regulatory frameworks. Health AI should be resilient against real-world environments throughout its lifecycle, including the training and prediction phases and maintenance during production, and health AI regulations should evolve accordingly. Data quality issues, variability over time or across sites, information uncertainty, human-computer interaction, and fundamental rights assurance are among the most relevant challenges. If health AI is not designed resiliently with regard to these real-world data effects, potentially biased data-driven medical decisions can risk the safety and fundamental rights of millions of people. In this viewpoint, we review the challenges, requirements, and methods for resilient AI in health and provide a research framework to improve the trustworthiness of next-generation AI-based clinical decision support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.