Abstract

Microgrids are inherently subject to a variety of cyber-physical threats due to potential vulnerabilities in their cyber systems. In this context, this paper introduces a cyber-attack-resilient design of a multi-carrier microgrid to avoid the loss of critical loads. The objective of the proposed model is to minimize the total planning cost of multi-carrier microgrids, which incorporates the investment and replacement costs of distributed energy resources, operation and maintenance costs, peak demand charges, emission costs, unserved energy costs, and potential reinforcement costs to handle cyber-physical attacks. Not only is the proposed multi-carrier microgrid planning approach able to determine the optimal size of multi-carrier microgrids, but it also identifies and reinforces the system to handle cyber-physical attacks by serving critical loads. The proposed multi-carrier microgrid planning model is formulated as a mixed-integer programming problem and solved using the GAMS 24.1 software. To evaluate the effectiveness of the proposed integrated resource planning model, it is applied to a real-world industrial park test-case system. Numerical simulations demonstrate the effectiveness of the resilience-oriented multi-carrier microgrid planning model. Importantly, the simulation results indicate the economic viability of multi-carrier microgrids optimized by the proposed model. Also, the model sensitivity of various decision variables has been analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.