Abstract

Air pollution, an unexpected event, poses a significant threat to public health and affects human mobility. Ride-hailing provides an effective way to understand how human mobility adapts to air pollution. This study examines a week-long ride-hailing demand dataset from Chengdu, China, to evaluate the resilience of ride-hailing services (or ride-hailing resilience) in the face of poor air quality. A gradient boosting decision tree model is developed to explore the non-linear and interaction effects of air pollution, the built environment, and socioeconomic characteristics on ride-hailing demand and resilience. The results show that the relative importance and impact of independent factors on ride-hailing demand and resilience vary. Specifically, the density of residence facilities and air pollution are the most important predictors of ride-hailing demand and resilience, respectively. The non-linear and interaction effects of air pollution and selected built-environment and socioeconomic characteristics on ride-hailing resilience are presented. We recommend that urban planners and policymakers address the vulnerability of regions to air pollution, optimize the allocation of ride-hailing resources, and develop strategies to improve regional resilience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.