Abstract

Let {Gi} be the random graph process: starting with an empty graph G0 with n vertices, in every step i ≥ 1 the graph Gi is formed by taking an edge chosen uniformly at random among the nonexisting ones and adding it to the graph Gi − 1. The classical “hitting‐time” result of Ajtai, Komlós, and Szemerédi, and independently Bollobás, states that asymptotically almost surely the graph becomes Hamiltonian as soon as the minimum degree reaches 2, that is if δ(Gi) ≥ 2 then Gi is Hamiltonian. We establish a resilience version of this result. In particular, we show that the random graph process almost surely creates a sequence of graphs such that for edges, the 2‐core of the graph Gm remains Hamiltonian even after an adversary removes ‐fraction of the edges incident to every vertex. A similar result is obtained for perfect matchings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.