Abstract
Thin-film transistors (TFTs) based on amorphous indium-gallium-zinc oxide (IGZO) with or without plasma fluorination treatment were fabricated and the sensitivity of their characteristics to hydrogen exposure was compared. Consistent with the lower hydrogen content revealed using secondary ion-mass spectrometry, TFTs built with fluorinated IGZO were shown to exhibit improved intrinsic resilience against hydrogen-induced degradation. Further enhanced by the incorporation of aluminum oxide as a hydrogen diffusion-barrier, such resilience is beneficial to the integration of fluorinated IGZO TFTs with hydrogen-containing devices, such as photodiodes based on amorphous hydrogenated silicon and TFTs based on low-temperature polycrystalline silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.