Abstract

This paper presents an advanced methodology for restoration of the electric power transmission system after its partial or complete failure. This load-optimized restoration is dependent on sectioning of the transmission system based on artificial neural networks. The proposed methodology and the underlying algorithm consider the transmission system operation state just before the fallout and, based on this state, calculate the power grid parameters and suggest the methodology for system restoration for each individual interconnection area. The novel methodology proposes an optimization objective function as a maximum load recovery under a set of constraints. The grid is analyzed using a large amount of data, which results in an adequate number of training data for artificial neural networks. Once the artificial neural network is trained, it provides an almost instantaneous network recovery plan scheme by defining the direct switching order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.