Abstract

Virus-induced neurological sequelae resulting from infection by Theiler’s murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included “resistant” and “susceptible,” as before, as well as a “resilient” TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.

Highlights

  • Virus-induced neurological sequelae resulting from infection by Theiler’s murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease

  • By comparing differentially expressed genes (DEGs) across different TMEV response categories, we identified genes and sequence variants which correlate with TMEV resistance and susceptibility, and—most importantly—with resilience

  • We found no variants that correlated with the presence or absence of TMEV for any Collaborative Cross (CC)

Read more

Summary

Introduction

Virus-induced neurological sequelae resulting from infection by Theiler’s murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. To characterize the spectrum of responses to TMEV, we use the Collaborative Cross, a resource of diverse mouse strains derived from a crossbreeding scheme including five common (A/J, C57BL/6J, 129S1/SvlmJ, NOD/ShiLtJ, NZO/HlLtJ) and three wild-derived (CAST/EiJ, PWK/Ph, and WSB/EiJ) inbred mouse strains. This crossbreeding “funnel” renders each CC strain genetically and phenotypically distinct, with the genetic diversity of an outbred population but the reproducibility of an inbred population [1,2]. We hypothesized that genetic factors underlie novel outcomes of TMEV infection, resilience

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call