Abstract

Significant efforts have been recently devoted to the qualitative and quantitative evaluation of resilience in engineering systems. Current resilience evaluation methods, however, have mainly focused on business supply chains and civil infrastructure, and need to be extended for application in engineering design. A new resilience metric is proposed in this paper for the design of mechanical systems to bridge this gap, by investigating the effects of recovery activity and system failure paths on system resilience. The defined resilience metric is connected to design through time-dependent system reliability analysis. This connection enables us to design a system for a specific resilience target in the design stage. Since computationally expensive computer simulations are usually used in design, a surrogate modeling method is developed to efficiently perform time-dependent system reliability analysis. Based on the time-dependent system reliability analysis, dominant system failure paths are enumerated and then the system resilience is estimated. The connection between the proposed resilience assessment method and design is explored through sensitivity analysis and component importance measure (CIM). Two numerical examples are used to illustrate the effectiveness of the proposed resilience assessment method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call