Abstract

The resilience and vulnerability of permafrost to climate change depends on complex interactions among topography, water, soil, vegetation, and snow, which allow permafrost to persist at mean annual air temperatures (MAATs) as high as +2 °C and degrade at MAATs as low as –20 °C. To assess these interactions, we compiled existing data and tested effects of varying conditions on mean annual surface temperatures (MASTs) and 2 m deep temperatures (MADTs) through modeling. Surface water had the largest effect, with water sediment temperatures being ~10 °C above MAAT. A 50% reduction in snow depth reduces MADT by 2 °C. Elevation changes between 200 and 800 m increases MAAT by up to 2.3 °C and snow depths by ~40%. Aspect caused only a ~1 °C difference in MAST. Covarying vegetation structure, organic matter thickness, soil moisture, and snow depth of terrestrial ecosystems, ranging from barren silt to white spruce ( Picea glauca (Moench) Voss) forest to tussock shrub, affect MASTs by ~6 °C and MADTs by ~7 °C. Groundwater at 2–7 °C greatly affects lateral and internal permafrost thawing. Analyses show that vegetation succession provides strong negative feedbacks that make permafrost resilient to even large increases in air temperatures. Surface water, which is affected by topography and ground ice, provides even stronger negative feedbacks that make permafrost vulnerable to thawing even under cold temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.